Jason Sippel & EMC HWRF team with contributions from others

2016-2017 HWRF DA TESTING & PLANS

Outline

Background & system upgrades

New data

Planned testing

• Long-term route

Background: Blending

- Spindown can occur with GSI increments in strong storms
- Vortex init (first guess) gives less spindown
- Blending zero's GSI increments near center for Vmax > 50 kt (H216)

"Blending" initialization below 600 hPa

Upgrades: Blending & Vortex Init

- Vortex adjustment still necessary for track and intensity
- Blending is a doubleedged sword
- Increasing blending threshold from 50 (H216) to 64 kt improves AL intensity & EP track

Upgrades: Blending & Vortex Init

- Blending is a doubleedged sword
- Increasing blending threshold from 50 (H216) to 64 kt improves AL intensity
 & EP track
- Vortex adjustment still necessary for track and intensity

Upgrades: Blending & Vortex Init

- Vortex adjustment can contribute to weak-storm bias
- For H217, vortex
 adjustment in weak
 systems is limited to
 low-level vortex
- We are also exploring other options

A different way of looking at stats HD65 results (41 cycles):

Average max Vmax: 68.3 kt

Cycles > 50 kt: 28

HDNA results (41 cycles):

Average max Vmax: 55.5 kt

Cycles > 50 kt: 19

Hybrid EnKF-GSI DA system: 2 way coupling

- Warm-start ensemble (H215) provides small benefit upon GDAS
- Cycled system w/o blending as good as old system
- Blending substantially improves Vmax for old and new systems

- Warm-start ensemble (H215) provides small benefit upon GDAS
- Cycled system w/o blending as good as old system
- Blending substantially improves Vmax for old and new systems

- H216: Warm-start HWRF ensemble only for TDR cycles
- Resources are available/reserved to ALWAYS run DA ensemble for 1 storm
- H217: Fully-cycled system runs continuously after first trigger sent (can be at TD declaration)
- Switching storms accomplished by sending a trigger file from a different storm

Upgrades: GH Bug Fix

- Assimilating dropsonde u/v near center degrades forecast (even for TS)
- H215-H216 bug allowed GH u/v
- This bug was fixed, and results look promising

Outline

Background & System upgrades

New data

Planned testing

• Long-term route

New data: HDOBS

- Far more HDOB flights than TDR flights
- H213 tests showed HDOBS (FL+SFMR) contributed to spindown and bias
- GDAS and HWRF physics have improved since then

Analysis increments of flightlevel u in H213. Note strong anticyclonic tendency.

New Data: HDOBS testing

- Testing done for FL u,v,t,q, no SFMR
- Adding FL data significantly improves intensity
- No impact on track
- Tentatively included in H217

New Data: Satellite obs

- Initial tests by CIMSS of new AMVs: SWIR, VIS, CAWV
- Initial results are very good for intensity
- Little impact on track
- Tentatively included in H217

Outline

Background & System upgrades

New data

Planned testing

Long-term route

Planned tests: Hourly cycling

- Results from OU system show hourly cycling helps with inner core balance
- Current priority is to develop/test this for operational HWRF
- This should appeal to researchers as well

Vmax from the 12Z17 cycle of Edouard in the OU hybrid 3DVar and 4DVar systems. Courtesy Xuguang Wang, HFIP partner.

Planned tests: IAU

- IAU might help spindown
- EMC is currently developing IAU for HWRF
- Results look good, but spindown worse
- Other challenges remain (WRF/DA)
- EMC/OU collaboration

Planned tests: G-IV TDR

- Initial testing being performed
- Initial results are mixed (slightly better track; worse intensity)
- More testing needed (EMC/HRD coordination)

Planned tests: Sonde telemetry

- TEMPDROP main body only gives sonde release point
- HRD results show benefit of accounting for sonde location
- EMC/HRD will test assimilation of improved sonde data

Outline

Background & System upgrades

New data

Planned testing

Long-term route

Long-term route

- Continue developing hybrid system > 4D-Hybrid w/ IAU
- Replace vortex initialization with self-consistent DA of something derived from TCVitals
- Update condensate (and w?) with each cycle
- Assimilation of new data like GOES-R AMVs, cloudy radiances, inner-core dropsondes, etc
- Coupled atmosphere-ocean DA

Conclusions

- HWRF DA is undergoing dramatic advancements
- We will be using more of the available data
- Both of the above factors should contribute to intensity improvement in particular
- Long term plans address ongoing issues (e.g., spindown, bias) and allow for greater data usage